

Welcome to Riscduino’s documentation!

Introduction

Riscduino is a Open source, 32 bit RISC V based SOC design targetted to pin compatible with arudino platform.
This project uses only open source tool set for RTL to GDS implementations.
The SOC follows openroad/openlane flow and development environment is compatible with efabless/carvel MPW methodology.

The Github Repo could be found here and database include all the RTL, Verification and Silicon implementation scripts.
* Riscdino Single Core database#1
* Riscdino Dual Core database#2
* Riscdino Quad Core database#3

The documentation contains the following chapters:

	Description contains the general information about the Riscduino SoC,

	getting-started contains the general information about how to use the Riscduino SoC,

	tool-versioning contains the tool versions prefered for usage with the current Riscduino SoC,

	quick start guide contains a guide on how to get quickly started with using Riscduino SoC without many details,

	riscduino-with-openlane contains information on how to build your user project with OpenLANE inside the Riscduino SoC,

	MPW Shuttle contains information about riscduino project in different MPW shuttle

	Simulation contains information on how to simulate,

	Pinout description describes the pinout of the SoC,

	RISCV describes the RISCV configuration,

	qspi describes the SPI configuration,

	uart describes the UART interface,

	usb1.1 describes the USB1.1 host interface,

	memory-mapped-register lists the memory mapped registers by address,

	references contains list of references,

	further-work lists things to be added to the documentation.

Footnotes

	#1

	https://github.com/dineshannayya/riscduino/

	#2

	https://github.com/dineshannayya/riscduino_dcore/

	#3

	https://github.com/dineshannayya/riscduino_qcore/

Description

This section provides basic description of the Riscduino SoC.

Block Diagram

[image: _images/riscvcore_blockdiagram.png]

Key features

	Open sourced under Apache-2.0 License (see LICENSE file) - unrestricted commercial use allowed.

	32 Bit RISC-V core

	2KB SRAM for instruction cache

	2KB SRAM for data cache

	2KB SRAM for Tightly coupled memory - For Data Memory

	Quad SPI Master

	UART with 16Byte FIFO

	USB 1.1 Host

	I2C Master

	UART Master

	Simple SPI Master

	6 Channel ADC (in Progress)

	6 PWM

	3 Timer (16 Bit), 1us/1ms/1second resolution

	Pin Compatbible to arudino uno

	Wishbone compatible design

	Written in System Verilog

	
	Open-source tool set
	
	simulation - iverilog

	synthesis - yosys

	backend/sta - openlane tool set

	Verification suite provided.

License

The Riscduino is an open-source design, licensed under the terms of Apache 2.0.

Repository

The complete chip design may be obtained from the git repository located at GitHub Riscdino database <https://github.com/dineshannayya/riscduino/>

Process

The Riscduino chip is tagetted to part of efabless MPW Shuttle and in SkyWater 0.13um CMOS technology, with process specifications and data at GitHub google/skywater-pdk repository#1.

Footnotes

	#1

	https://github.com/google/skywater-pdk

quick start guide

This section describes how to simulate and .gds generarion with the Riscduino repository#1

Prerequisites

	Docker

If you have followed the Getting Started Guide you should have all of these installed. To proceed make sure, that your environment variables are set correctly:

git clone https://github.com/efabless/caravel-lite.git
cd caravel-lite
make install_mcw

export OPENLANE_IMAGE_NAME=riscduino/openlane:<Check the mpw version on project mpw4/mpw5/latest>
export OPENLANE_TAG=<Check the mpw version on project mpw4/mpw5/latest>
export CARAVEL_ROOT=<Set the caravel lite root>
export MCW_ROOT=$CARAVEL_ROOT/mgmt_core_wrapper

Building individual design

To build your design go into openlane and run make with your design name as a target:

cd openlane
make <design>

This will run your design throught the OpenLANE workflow and if successfull produce a .gds file of your project. The subdirectory runs/<design> will be created in your designs folder, which contains the results of the run. The following result files in runs/<design>/ are important:

	<design>/runs/<design>/reports/final_summary_report.csv: Contains the results of the run including violations

	<design>/runs/<design>/results/magic/<design>.lef

	<design>/runs/<design>/results/magic/<design>.gds

The .gds and .lef files can also be found in the gds and lef directories on the top level of the repository.

Footnotes

	#1

	https://github.com/dineshannayya/riscduino

MPW Shuttle

This section provides details on Riscduino submission in different MPW shuttle

shuttle

	MPW Shuttle

	Tape-out Date

	Project Name

	Submission Link

	Silicon Status

	Project details

	MPW-2

	November 15, 2021

	YiFive

	Link#1

	Waiting

	Single Riscv core without cache+SDRAM, Not compatible with Arudino pins

	MPW-3

	November 15, 2021

	riscduino

	Link#2

	Waiting

	Single Riscv core without cache

	MPW-4

	December 31, 2021

	riscduino-R1

	Link#3

	Waiting

	Single Riscv core with cache + SRAM

	MPW-5

	March 21, 2022

	riscduino-SCore (S2)

	Link#4

	Waiting

	Single Riscv core with cache + DFFRAM

	MPW-5

	March 21, 2022

	riscduino-Dual Core (D0)

	Link#5

	Waiting

	Dual Riscv core with cache + SRAM

	MPW-5

	March 21, 2022

	riscduino-Quad Core (Q0)

	Link#6

	Waiting

	Quad Riscv core with cache + SRAM

Footnotes

	#1

	https://platform.efabless.com/projects/152/

	#2

	https://platform.efabless.com/projects/385/

	#3

	https://platform.efabless.com/projects/575/

	#4

	https://platform.efabless.com/projects/67/

	#5

	https://platform.efabless.com/projects/718

	#6

	https://platform.efabless.com/projects/782

Pinout description

This section describes lists the pinout for the SoC, and provides the description for pins.

Pinout Diagram

[image: _images/riscduino_pinmap.png]

Pinout Map

Pinout

	ATMGA328 Pin No

	Functionality

	Arudino Pin Name

	Carvel Pin Mapping

	1

	PC6/RESET

	
	mprj_io[0]

	2

	PD0/RXD

	D0

	mprj_io[1]

	3

	PD1/TXD

	D1

	mprj_io[2]

	4

	PD2/INT0

	D2

	mprj_io[3]

	5

	PD3/INT1/OC2B(PWM0)

	D3

	mprj_io[4]

	6

	PD4

	D4

	mprj_io[5]

	7

	VCC

	
	

	8

	GND

	
	

	9

	PB6/XTAL1/TOSC1

	
	mprj_io[6]

	10

	PB7/XTAL2/TOSC2

	
	mprj_io[7]

	11

	PD5/OC0B(PWM1)/T1

	D5

	mprj_io[8]

	12

	PD6/OC0A(PWM2)/AIN0

	D6

	mprj_io[9]/analog_io[2]

	13

	PD7/A1N1

	D7

	mprj_io[10]/analog_io[3]

	14

	PB0/CLKO/ICP1

	D8

	mprj_io[11]

	15

	PB1/OC1A(PWM3)

	D9

	mprj_io[12]

	16

	PB2/SS/OC1B(PWM4)

	D10

	mprj_io[13]

	17

	PB3/MOSI/OC2A(PWM5)

	D11

	mprj_io[14]

	18

	PB4/MISO

	D12

	mprj_io[15]

	19

	PB5/SCK

	D13

	mprj_io[16]

	20

	AVCC

	
	

	21

	AREF

	
	analog_io[10]

	22

	GND

	
	

	23

	PC0/ADC0

	A0

	mprj_io[18]/analog_io[11]

	24

	PC1/ADC1

	A1

	mprj_io[19]

	25

	PC2/ADC2

	A2

	mprj_io[20]

	26

	PC3/ADC3

	A3

	mprj_io[21]

	27

	PC4/ADC4/SDA

	A4

	mprj_io[22]

	28

	PC5/ADC5/SCL

	A5

	mprj_io[23]

	Sflash

	sflash_sck

	
	mprj_io[24]

	Sflash

	sflash_ss[0]

	
	mprj_io[25]

	Sflash

	sflash_ss[1]

	
	mprj_io[26]

	Sflash

	sflash_ss[2]

	
	mprj_io[27]

	Sflash

	sflash_ss[3]

	
	mprj_io[28]

	Sflash

	sflash_io[0]

	
	mprj_io[29]

	Sflash

	sflash_io[1]

	
	mprj_io[30]

	Sflash

	sflash_io[2]

	
	mprj_io[31]

	Sflash

	sflash_io[3]

	
	mprj_io[32]

	
	
	
	

	UARTM

	uartm_rxd

	
	mprj_io[34]

	UARTM

	uartm_txd

	
	mprj_io[35]

	USB HOST

	usb_dp

	
	mprj_io[36]

	USB HOST

	usb_dn

	
	mprj_io[37]

Footnotes

Simulation

This section provides basic description of how to simulate the Riscduino SoC.

Basic Usage command : make verify-<test directory name> SIM=<RTL/GL> DUMP=<ON/OFF>

SIM=RTL - For RTL Simulation (Default).
SIM=GL - For Gate Level Simulation.

DUMP=ON - For simulation with waveform dump enabled.
DUMP=OFF - For simulation with waveform dump disabled (Default)

Dut Test case

Below test-case run faster as it uses only user_project_wrapper and wishbone to control the test case

	make verify-user_basic

	make verify-user_uart

	make verify-user_uart1

	make verify-user_risc_boot

	make verify-user_sspi

	make verify-user_i2cm

	make verify-user_uart_master

	make verify-user_pwm

	make verify-user_gpio

	make verify-user_timer

	make verify-user_qspi

	make verify-user_usb

Core RISC-V Regression

Below test is validate the RISC v compliance

	make verify-riscv_regress

	This test has has following sub tests:
	riscv_isa
riscv_compliance
isr_sample
coremark
dhrystone21
hello

Caravel+ user_project_wrapper Test case

Below Test run take more time as it’s full chip run with caravel + user_project_wrapper

	make verify-wb_port

	make verify-risc_boot

	make verify-uart_master

If you want to dump, then you can add DUMP=ON swicth

Test Case Details

Below test-case run faster as it uses only user_project_wrapper and wishbone to control the test case

	user_basic
AIM: To Validate the Test the different clock selection option for wishbone , risc core, usb and validate device signature

	user_uart
AIM: Test to validation uart rx to tx loop back.
TEST SEQUENCE: 40 random char are sent from TB to DUT and RISCV core does the hardware loop back,i.e UART-RX to UART-TX

	uart_risc_boot
AIM: Test the RISC CORE boot
TEST SEQUENCE:

	Make sure that core hex file loaded into spi memory

	Though wishbone sequence wake-up the core.

	core boots from spi

	core write 6 Pimux register with some signature

	After some delay, testbench validation these signature through wishbone

	
	user_spi
	AIM: Test SPI DDR,QUAD,DUAL,SINGLE mode.
BACKGROUND:

SINGLE - This is single pin tx/rx transaction and seperate pin for Tx (spi_sdo[0]) and Rx (spi_sdi[0]) pin, data valid for one spi clock
DUAL - This uses two pin for tx/rx transaction, Tx: spi_sdo[1:0] & Rx: spi_sdi[1:0], data valid for one spi clock
QUAD - This uses four pins for tx/rx transaction, Tx: spi_sdo[3:0] & Rx : spi_sdi[3:0], Data valid for one spi clock
DDR - This uses four pins for tx/rx transaction, Tx: spi_sdo[3:0] & Rx : spi_sdi[3:0], Data valid for half spi clock

	TEST SEQUENCE:
	Test SPI SRAM Memory through Indirect Access
Test SPI SRAM memory through Direct Access
TEST SPI FLASH Memory in DDR Mode
TEST SPI FLASH Memory in QUAD Mode
TEST SPI FLASH Memory in DUAL Mode
TEST SPI FLASH Memory in SINGLE Mode

	
	user_i2cm
	AIM: Test the I2C Interface
TEST SEQUENCE:

I2C Write and Read access

	
	user_uart_master
	AIM: Test the uart master port
TEST SEQUENCE:

Configure the uart master baudrate through la_in pins
From TB uart master send the Write command to wake the device
Write some general purpose register with uart master and read back and validate

	
	riscv_regress
	test is validate the RISC v compliance and this have below sub tests

riscv_isa
riscv_compliance
isr_sample
coremark
dhrystone21
hello

Below Test run take more time as it’s full chip run with caravel + user_project_wrapper
1. wb_port

AIM: Test user_project_wrapper through caravel wishbone interface
TEST SEQUENCE:

Boot through caravel riscv core
Write some general purpose register user project wrapper and read back and validate

	
	risc_boot
	AIM: Boot the User RISC core through caravel core
TEST SEQUENCE:

Boot through caravel riscv core
Wake-up the user riscv core
User risc core write some general porpose register with signtaure
Read back through caravel riscv core and validate the signature

	
	uart_master
	AIM: Test the uart master port from caravel core
TEST SEQUENCE:

Configure the uart master baudrate through la_in pins using caravel core
From TB uart master send the Write command to wake the device

Footnotes

RISCV

Riscduino SOC Integrated 32 Bits RISC V core. Initial version of Single core RISC-V core is picked from
Syntacore SCR1 (https://github.com/syntacore/scr1)

core customization

	Following Design changes are done on the basic version of syntacore RISC core
	
	Some of the sv syntex are changed to standard verilog format to make compatibile with opensource tool iverilog & yosys

	Instruction Request are changed from Single word to 4 Word Burst

	Multiplication and Divsion are changed to improve timing

	Additional pipe line stages added to improve the RISC timing closure near to 50Mhz

	2KB instruction cache

	2KB data cache

	Additional router are added towards instruction cache

	Additional router are added towards data cache

	Modified AXI/AHB interface to wishbone interface for instruction and data memory interface

Features

	RV32I or RV32E ISA base + optional RVM and RVC standard extensions

	Machine privilege mode only

	2 to 5 stage pipeline

	2KB icache

	2KB dcache

	Optional Integrated Programmable Interrupt Controller with 16 IRQ lines

	Optional RISC-V Debug subsystem with JTAG interface

	Optional on-chip Tightly-Coupled Memory

Block Diagram

Following RISCV core configuration are been tried in different MPW Shuttle

Riscv Single core

[image: _images/riscduino_1c.png]

Riscv Single core + cache

[image: _images/riscduino_1cc.png]

Riscv Two core + cache

[image: _images/riscduino_2cc.png]

Footnotes

Index

API

Footnotes

Introduction

Riscduino is a Open source, 32 bit RISC V based SOC design targetted to pin compatible with arudino platform.
This project uses only open source tool set for RTL to GDS implementations.
The SOC follows openroad/openlane flow and development environment is compatible with efabless/carvel MPW methodology.

The Github Repo could be found here and database include all the RTL, Verification and Silicon implementation scripts.
* Riscdino Single Core database#1
* Riscdino Dual Core database#2
* Riscdino Quad Core database#3

The documentation contains the following chapters:

	Description contains the general information about the Riscduino SoC,

	getting-started contains the general information about how to use the Riscduino SoC,

	tool-versioning contains the tool versions prefered for usage with the current Riscduino SoC,

	quick start guide contains a guide on how to get quickly started with using Riscduino SoC without many details,

	riscduino-with-openlane contains information on how to build your user project with OpenLANE inside the Riscduino SoC,

	MPW Shuttle contains information about riscduino project in different MPW shuttle

	Simulation contains information on how to simulate,

	Pinout description describes the pinout of the SoC,

	RISCV describes the RISCV configuration,

	qspi describes the SPI configuration,

	uart describes the UART interface,

	usb1.1 describes the USB1.1 host interface,

	memory-mapped-register lists the memory mapped registers by address,

	references contains list of references,

	further-work lists things to be added to the documentation.

Footnotes

	#1

	https://github.com/dineshannayya/riscduino/

	#2

	https://github.com/dineshannayya/riscduino_dcore/

	#3

	https://github.com/dineshannayya/riscduino_qcore/

Usage

Installation

To use Lumache, first install it using pip:

(.venv) $ pip install lumache

Creating recipes

To retrieve a list of random ingredients,
you can use the lumache.get_random_ingredients() function:

The kind parameter should be either "meat", "fish",
or "veggies". Otherwise, lumache.get_random_ingredients()
will raise an exception.

For example:

>>> import lumache
>>> lumache.get_random_ingredients()
['shells', 'gorgonzola', 'parsley']

Footnotes

 _images/riscduino_1cc.png
Interrupt System Debug Tap

Controller Control Unit | Module Controller
Control Multi Port Trigger Hard
Status Reg | | RegFile Debug Unit | | Debug Unit

Instruction Instruction Execution Load Store

Fetch Unit | | Decode Unit Unit Unit
I RISCV-CORE I
e\ RISCV-INTF ouei\
[f J

Timer

Tighty- w
» Coupled o
Memor

DCACHE || DMEM
[CONTROLLER WB Bridgel

[CACHEWE 1= TCMSRAM UF DCACHEWB IF DMEM WB IF

_images/riscduino_2cc.png
Interrupt System Debug Tap
Controller Control Unit | | Module Controller
Control Multi Port Trigger Hard
Status Reg | | RegFile Debug Unit | | Debug Unit
Instruction Instruction Execution Load Store
Fetch Unit Decode Unit| Unit Unit

CORE-1 DMEM

RISCV-CORE-0
ORE-1 IMEM

= &/

RISCV-MINTF
IMEM DMEM
ROUTER ROUTER!

=
Tighy- W

» Coupled [«

Memory
ICACHE ocacHe || bvEM
[conTROLLE [CONTROLLER W8 Bridge
ICaSLEWEE TCM SRAM I/F DCACHEWB IF DMEM WB I/F

_images/riscduino_1c.png
Carvel Mngt WishBone

Riscduino SOC

RISC V Core
(Syntacore/scrl) SRAM

SPI Master

QsPI 6 ChADC UART [2C ussLi

_images/riscduino_pinmap.png
=}
=]

4

LER- rce
RxD -JGM- D1 -JEEE- PO
Txo - D> -EEE- P01
D3 - P02
= ros
D5 RS- PD4

I

-
GND
MPS-EE0R- oo -EEE- eee
GE-NZN- o7 - ee7
(GE -~ ps -EEEE- DS
(55R — iGN ENN- oo EEE- P06
B oo -JES- Po7
8- o1 - PaO

o pcs —{EEE- - -JSASI—{SCH —IEES
* pcs —{(ENER- - -JERE—SEAN—U
« pcs —{E- - QAU
e pc2 — (- o iR —AEeE
« po1 —{EGE- o -SA— e

o Pco —{EGHE- o RGN —ASES
* GND

- AREF A10

& AVCC -

PB5 —{iE)- D16 -JIISN—1SCK

« PB4 —{iGiI- D15 -J2I—iso

« p3 —{E- D14 I wosi —{eeA—I662)
« P2 —{i@)- D13 -JEON—{'ss —{6eE]

o pB1 —{Ei- D12 -JIGII—GEA]

o TR oo
O SSERAITEEAE o - Do

GND | BNNTERRUBTEND A Ansiog

_images/riscvcore_blockdiagram.png
RISCDUINO

TCM MEMORY 3)
(2kB) 2xGPIO|

a

4
o

28

Icache Dcache o

(2KB) (2KB)

12c
ASTER

UART |,

o

¥ &
Carvel Mngt UART Master
WishBone

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Riscduino’s documentation!

_static/riscduino_1cc.png
Interrupt System Debug Tap

Controller Control Unit | Module Controller
Control Multi Port Trigger Hard
Status Reg | | RegFile Debug Unit | | Debug Unit

Instruction Instruction Execution Load Store

Fetch Unit | | Decode Unit Unit Unit
I RISCV-CORE I
e\ RISCV-INTF ouei\
[f J

Timer

Tighty- w
» Coupled o
Memor

DCACHE || DMEM
[CONTROLLER WB Bridgel

[CACHEWE 1= TCMSRAM UF DCACHEWB IF DMEM WB IF

_static/riscduino_2cc.png
Interrupt System Debug Tap
Controller Control Unit | | Module Controller
Control Multi Port Trigger Hard
Status Reg | | RegFile Debug Unit | | Debug Unit
Instruction Instruction Execution Load Store
Fetch Unit Decode Unit| Unit Unit

CORE-1 DMEM

RISCV-CORE-0
ORE-1 IMEM

= &/

RISCV-MINTF
IMEM DMEM
ROUTER ROUTER!

=
Tighy- W

» Coupled [«

Memory
ICACHE ocacHe || bvEM
[conTROLLE [CONTROLLER W8 Bridge
ICaSLEWEE TCM SRAM I/F DCACHEWB IF DMEM WB I/F

_static/riscduino_1c.png
Carvel Mngt WishBone

Riscduino SOC

RISC V Core
(Syntacore/scrl) SRAM

SPI Master

QsPI 6 ChADC UART [2C ussLi

_static/riscduino_pinmap.png
=}
=]

4

LER- rce
RxD -JGM- D1 -JEEE- PO
Txo - D> -EEE- P01
D3 - P02
= ros
D5 RS- PD4

I

-
GND
MPS-EE0R- oo -EEE- eee
GE-NZN- o7 - ee7
(GE -~ ps -EEEE- DS
(55R — iGN ENN- oo EEE- P06
B oo -JES- Po7
8- o1 - PaO

o pcs —{EEE- - -JSASI—{SCH —IEES
* pcs —{(ENER- - -JERE—SEAN—U
« pcs —{E- - QAU
e pc2 — (- o iR —AEeE
« po1 —{EGE- o -SA— e

o Pco —{EGHE- o RGN —ASES
* GND

- AREF A10

& AVCC -

PB5 —{iE)- D16 -JIISN—1SCK

« PB4 —{iGiI- D15 -J2I—iso

« p3 —{E- D14 I wosi —{eeA—I662)
« P2 —{i@)- D13 -JEON—{'ss —{6eE]

o pB1 —{Ei- D12 -JIGII—GEA]

o TR oo
O SSERAITEEAE o - Do

GND | BNNTERRUBTEND A Ansiog

_static/riscvcore_blockdiagram.png
RISCDUINO

TCM MEMORY 3)
(2kB) 2xGPIO|

a

4
o

28

Icache Dcache o

(2KB) (2KB)

12c
ASTER

UART |,

o

¥ &
Carvel Mngt UART Master
WishBone

